Rinderpest
an overview

Vincent Michaud
UMR ASTRE:
”heAlth, animalS Territories, Risk and Ecosystem”

Tunis, 11-13 July 2017
Content

- History
- From control to eradication
- Clinical signs / necropsy
- Transmission
- Etiologic agent
- Diagnostic
- Sampling and biosafety
- Sample shipment
History (1)

– Ancient infectious disease of Artiodactyl
 • Known since the 3rd millennium (Blancou, 1994)
– Associated with war and movement of armies
 • 1184 BC: the siege of Troy
 • 810 AD: Charlemagne’s army bring it back to France
 • 1889: pandemic in Africa through Ethiopia following the war with Italian army
 • WWI: Balkans, Russia, Poland
 • 1969-1973: pandemic in the Middle East (civil war in Lebanon)
Rinderpest over the XXth century

– Europe:
 • Occasional outbreaks, but mainly free of RP due to strict sanitary measures

– America/Australia
 • Occasional outbreaks following live animal importation

– Middle East and Asia:
 • 1969-1973: Lebanon, Israel, Syria
 • 1990’s: Sri Lanka, Russian – Mongolian border, Turkey (Gulf war)

– Africa:
 • 1976: end of the JP15 vaccination program
 • 1979-1984: second African pandemic (first one 1885): 1 million bovine dead

– 1992:
 • Global Rinderpest Eradication Program (GREP)

– 2011: RP is the second disease to be officially declared as eradicated (after small pox in 1980)
Rinderpest control: eradication programs over the time

Chronological table of global and regional vaccination and eradication campaigns

Rinderpest control in Africa and Asia: eradication programs

- Global Rinderpest Eradication Program (GREP, since 1993)

FAO understanding of epidemiological and accreditation situation 2009-2011
Socio-economic impact

- Death rates approach 100% in naïve populations: tremendous socioeconomic consequences

 • famine in cattle-dependant areas (2.5 million bovines and buffalos dead in RSA during the first African pandemic)

 • Wild animals depopulation

 • 1982-1984 outbreaks: US$500 million
 • Vaccination campaigns: US$100 million/year
Clinical signs (1)

- **Incubation period**
 - 3 to 15 days
 - Most of time 4 to 5 days

- **Clinical forms**
 - Classic
 - Peracute
 - Subacute
 - Atypical
Clinical signs (2)

- **Classic form**

 1-2 days
 - Fever (up to 41.5°C), depression, anorexia
 - Serous mucopurulent oculo-nasal discharge
 - Halitosis
 - Drool of fetid saliva
 - Necrosis and desquamation of the oral mucosa

 2-5 days
 - Constipation then hemorrhagic and/or watery diarrhea
 - Dehydration

 4-5 days
 - Death within 6-12 days
Clinical signs (3)

- **Peracute form**
 - Young animals
 - High fever with congested mucous membranes
 - Death within 2 to 3 days

- **Subacute form**
 - Mild clinical signs
 - Low mortality

- **Atypical**
 - Irregular fever
 - Mild or no diarrhea
 - Immunosuppression leading to secondary infection
Necropsy (1)

- **Esophagus**
 - Brown and necrotic foci

- **Omasum**
 - Rare erosions and hemorrhage

- **Abomasum**
 - Hemorrhagic/necrotic abomasitis

- **Cecum and colon**
 - Necrosis, edema and congestion
 - « Tiger stripping »
Necropsy (2)

- **Lymph nodes**
 - Swollen and edematous

- **Gall bladder**
 - Hemorrhagic mucosa

- **Lungs**
 - Emphysema, congestion, areas of pneumonia
Epidemiology

- **Susceptible species**
 - Especially cattle and (water) buffaloes

- **Barrier species crossing**
 - Most of ungulates can be infected
 - Sheep, goats and pigs:
 - subclinical infection – seroconversion
 - transmission to cattle
 - Camels
 - Giraffe, antelopes, hippopotami

- Wild animals not considered as reservoir
Transmission (1)

- Direct contact
 - Nasal and ocular secretion
 - Biological fluids: saliva, urine, blood
 - Feces

- Ingestion of contaminated food or water

- Indirect contact
 - Fomites
Transmission (2)

- **Aerosol**
 - only under very short distances

- **Most infectious period:**
 - 1-2 days before clinical signs
 - 8-9 days after the onset of clinical signs

- **Vector transmission unknown**

- **No chronic carrier state reported**