Antiparasitic Resistance: Challenges, Awareness, Change

Dr. Anna O’Brien
Dr. Aimee Phillippi-Taylor
Center for Veterinary Medicine, FDA
FDA-CVM

• Within the Food & Drug Administration (FDA), the Center for Veterinary Medicine (CVM) regulates animal drugs (including antiparasitics), animal feed, and veterinary devices—not vaccines (USDA)
• We make sure an animal drug is safe and effective before approving it
• We monitor the safety and effectiveness of animal drugs on the market
Overview

Antiparasitic resistance is a global issue for grazing livestock

• What is antiparasitic resistance
• How to test for it
• Global scope
• How to manage it
• Challenges
• Awareness/collaboration
Common gastrointestinal nematodes (roundworms) of grazing livestock

- *Haemonchus*
- *Trichostrongylus*
- *Ostertagia*
- *Strongylus vulgaris*
- *Cooperia*
- *Cyathostomes*
- *Parascaris equorum*

most pathogenic
The Usual Tools

<table>
<thead>
<tr>
<th>Antiparasitic Drug Class</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzimidazoles</td>
<td>Thiabendazole, albendazole, fenbendazole, oxfendazole, oxibendazole</td>
</tr>
<tr>
<td>Imidazothiazoles</td>
<td>Levamisole</td>
</tr>
<tr>
<td>Macrocyclic lactones</td>
<td>Ivermectin, doramectin, eprinomectin, moxidectin, abamectin**</td>
</tr>
<tr>
<td>Sprinoindoles</td>
<td>Derquantel **</td>
</tr>
<tr>
<td>Tetrahydropyrimidines</td>
<td>Morantel tartate, pyrantel</td>
</tr>
<tr>
<td>Piperazines</td>
<td>Piperazine</td>
</tr>
<tr>
<td>Isoquinolones</td>
<td>Praziquantel*</td>
</tr>
<tr>
<td>Amino-acetonitrile derivatives (AADs)</td>
<td>Monepantel **</td>
</tr>
</tbody>
</table>
Effects of parasitism

Internal parasitism has a negative impact on livestock, which affects livestock owners

• Results in:
 – Weight loss
 – Decreased milk production
 – Decreased fertility
 – Increased susceptibility to other diseases
 – Death

Net effect: negative impact on food supply (meat and milk)
Defining Antiparasitic Resistance

“Ability of a parasite to survive treatment with an antiparasitic drug that is generally effective against the same parasite species at the same dose and against the same stage of infection.”

– Due mostly to gene mutations in the parasite which are passed to subsequent generations of parasites
Measuring Antiparasitic Resistance

Fecal egg count reduction test:

\[
\text{Egg reduction} = \frac{\text{(Pre-tx egg count – post-tx egg count)}}{\text{(Pre-tx egg count)}} \times 100
\]

Egg reduction $< 90\%$ post-treatment generally indicates antiparasitic resistance.
First global reports of antiparasitic resistance (Kaplan 2004)

<table>
<thead>
<tr>
<th>Drug</th>
<th>Host</th>
<th>Year of initial drug approval *not necessarily in US</th>
<th>First published report of resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzimidazoles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiabendazole</td>
<td>Sheep</td>
<td>1961</td>
<td>1964</td>
</tr>
<tr>
<td></td>
<td>Horse</td>
<td>1962</td>
<td>1965</td>
</tr>
<tr>
<td>Imidothiazoles-tetrahydropyrimidines</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Levamisole</td>
<td>Sheep</td>
<td>1970</td>
<td>1979</td>
</tr>
<tr>
<td></td>
<td>Horse</td>
<td>1974</td>
<td>1996</td>
</tr>
<tr>
<td>Macrocyclic lactones</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ivermectin</td>
<td>Sheep</td>
<td>1981</td>
<td>1988</td>
</tr>
<tr>
<td></td>
<td>Horse</td>
<td>1983</td>
<td>2002</td>
</tr>
<tr>
<td>Moxidectin</td>
<td>Sheep</td>
<td>1991</td>
<td>1995</td>
</tr>
<tr>
<td></td>
<td>Horse</td>
<td>1995</td>
<td>2003</td>
</tr>
</tbody>
</table>
What was happening?

• Ivermectin and other macrocyclic lactones (MLs) were highly effective when first approved in 1980s/1990s
 – Wide safety margin
 – Easy to use

• Producers became heavily dependent on drugs for control/eradication of parasites, resistance has developed
Antiparasitic Resistance: Global scope - Africa

• First case of ivermectin resistance in sheep reported by Van Wyk in South Africa in 1987

• Reports of antiparasitic resistance from other African countries:
 – Primarily from Kenya and South Africa
 – Mainly sheep, *Haemonchus contortus*
 – South African commercial sheep industry reported as the worst affected in the world with regard to antiparasitic resistance (Vatta and Lindberg 2006)
Africa (Tsotetsi, et al 2013)

<table>
<thead>
<tr>
<th>Description of variable</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farmers with communally grazing livestock</td>
<td>56</td>
</tr>
<tr>
<td>Farmers already making profit out of their livestock</td>
<td>22</td>
</tr>
<tr>
<td>Farmers who have livestock, but do not make a profit, still trying to decide as to what form of profit making they can venture into with their livestock</td>
<td>63</td>
</tr>
<tr>
<td>Farmers who keep livestock for other reasons than profit making</td>
<td>16</td>
</tr>
<tr>
<td>Farmers providing nutritional supplements</td>
<td>83</td>
</tr>
<tr>
<td>Farmers aware of animal helminthosis</td>
<td>88</td>
</tr>
<tr>
<td>Farmers who treat their animals for worm infections</td>
<td>67</td>
</tr>
<tr>
<td>Farmers who use targeted selection methods for worm treatment</td>
<td>72</td>
</tr>
<tr>
<td>Farmers who require more information on animal health and production matters</td>
<td>89</td>
</tr>
</tbody>
</table>
Products used for deworming in South Africa (Tsotetsi, et al 2013)
Uncertainty!

Parasitologists are uncertain of the current prevalence and distribution of resistant parasites in the US and other areas of the globe.

You only find resistance when you look. Many countries lack personnel, infrastructure, funding, and tools for diagnostic testing and research.
Responsible Use

There is a need for **a change** in the way veterinarians and producers view parasites:

From parasite **elimination** to **parasite control**
Responsible management

- Weigh/weight tape animals to ensure proper dosing
- Follow label directions for adequate administration
- Quarantine new livestock, if possible
- Reduce grazing density on pastures, if possible
- Cull chronic poor-doers, if possible
- Sheep and goats: use FAMACHA evaluation
- Avoid deworming the entire herd: Use Targeted Selective Treatment (TST)
Targeted Selective Treatment (TST) – a success story

• Study in Botswana (Walker, et al, 2015) demonstrated viability of TST of individual animals in small farms in low-income economies
 – Farmers taught to evaluate health of goats and only treat when needed based on:
 • FAMACHA, bottle jaw, body weight, diarrhea scores
 – Results showed that farms that used TST did not suffer losses at a higher rate than farms treating all animals
 • TST is feasible and effective for resource-poor farmers
 • TST helps reduce use of antiparasitics
Refugia

The proportion of the total parasite population that is not selected for antiparasitic treatment

- Those parasites that are in “refuge” from the drug
- Therefore have no selection pressure to develop resistance
- A benefit of refugia is to maintain a proportion of susceptible parasites on the farm
Parasite population within the herd:

Treat entire herd, so no refugia is preserved.

Treat only 50% of herd, so some refugia is preserved.

Key:
- **Susceptible parasite**
- **Resistant parasite**
Global Challenges

Combating antiparasitic resistance globally faces a spectrum of challenges:

- Counterfeit drugs
- Total anthelmintic failure in some livestock species
- Combinations for 3 or 4 active ingredients
- Challenges of maintaining refugia
Role of education

• In the U.S., many veterinary schools are starting to emphasize parasite management and veterinarians are becoming more aware of the emergence of resistance

• This is where collaboration and communication play a vital role
 – Both locally and globally!
Global efforts to increase awareness

- Europe: **Parasol/GloWorm**
 - EU project 2006 – 2009, demonstrated Targeted Selective Treatment was feasible
 - GloWorm project 2012 – 2014, investigated sustainable control options
Global efforts to increase awareness

- United Kingdom: **SCOPS (Sustainable Control of Parasites in Sheep)**
 - “Industry-led group that represents the interests of the sheep industry”
Global efforts to increase awareness

• New Zealand: **WormWise**
 – Developed by national government, agricultural industry representatives, and the national veterinary association

• Australia: **WormBoss** – “Australia’s sheep and goat worm control resource”
 – Developed by the Australian Sheep Industry Cooperative Research Centre and Australian Wool Innovation with the support of Animal Health Alliance, in 2005
Global efforts to increase awareness

FDA-CVM’s Initiative: Antiparasitic Resistance Management Strategy (ARMS)

- An initiative to promote sustainable use of antiparasitic drugs in grazing livestock species
- Launched in September 2012
- 3-pronged approach:
 - Education
 - Research
 - Regulation
Final Thoughts

• Ultimately, we want to ensure that approved antiparasitics remain effective for as long as possible

• This should be a shared goal throughout the world for the benefit of animal and public health
Final Thoughts

• Global antiparasitic resistance has a large impact on animal welfare and economies, both locally and nationally.

• Education is key in spreading the word about responsible use of antiparasitic drugs.
Resources

- CVM website: http://www.fda.gov/animalveterinary/safetyhealth/ucm350360.htm
- Docket for public meeting: http://www.fda.gov/animalveterinary/resourcesforyou/ucm318015.htm
- Public meeting overview: http://www.fda.gov/downloads/AnimalVeterinary/ResourcesforYou/UCM344299.pdf
- Veterinary Parasitology Special Issue Vol 204, Issues 1-2, Pages 1-80 (30 July 2014)
- Video: https://www.youtube.com/watch?v=kn1NE-vmhr4
Contacts

• **Anna O’Brien, DVM** (cattle, small ruminants)
 anna.obrien@fda.hhs.gov

• **Aimee Phillippi-Taylor, DVM** (equine)
 aimee.phillippi-taylor@fda.hhs.gov